Biocompatible, degradable thermoplastic polyurethane based on polycaprolactone-block-polytetrahydrofuran-block-polycaprolactone copolymers for soft tissue engineering
نویسندگان
چکیده
منابع مشابه
Electrospun biocompatible Gelatin-Chitosan/Polycaprolactone/Hydroxyapatite nanocomposite scaffold for bone tissue engineering
In recent years, nanocomposite scaffolds made of bioactive polymers have found multiple applications in bone tissue engineering. In this study composite nanofibrous structure of gelatin (Gel)/chitosan (Cs)-polycaprolactone (PCL) containing hydroxyapatite (HA) were fabricated using co-electrospinning process. To assay the biocompatibility and bioactivity of electrospun nanocomposite scaffolds, t...
متن کاملElectrospun biocompatible Gelatin-Chitosan/Polycaprolactone/Hydroxyapatite nanocomposite scaffold for bone tissue engineering
In recent years, nanocomposite scaffolds made of bioactive polymers have found multiple applications in bone tissue engineering. In this study composite nanofibrous structure of gelatin (Gel)/chitosan (Cs)-polycaprolactone (PCL) containing hydroxyapatite (HA) were fabricated using co-electrospinning process. To assay the biocompatibility and bioactivity of electrospun nanocomposite scaffolds, t...
متن کاملLipiodol nanoemulsions stabilized with polyglycerol-polycaprolactone block copolymers for theranostic applications
BACKGROUND Polyglycerol is an attractive hydrophilic building block of amphiphilic copolymers for biomedical and pharmaceutical applications due to its biocompatibility, facile chemical modification, and anti-fouling activity. Herein we introduce theranostic nanoemulsions incorporating anti-cancer therapeutic and contrast agents using linear polyglycerol-poly(ε-caprolactone) diblock copolymers ...
متن کاملPolycaprolactone Scaffolds Fabricated via Bioextrusion for Tissue Engineering Applications
The most promising approach in Tissue Engineering involves the seeding of porous, biocompatible/biodegradable scaffolds, with donor cells to promote tissue regeneration. Additive biomanufacturing processes are increasingly recognized as ideal techniques to produce 3D structures with optimal pore size and spatial distribution, providing an adequate mechanical support for tissue regeneration whil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Materials Chemistry B
سال: 2017
ISSN: 2050-750X,2050-7518
DOI: 10.1039/c7tb00419b